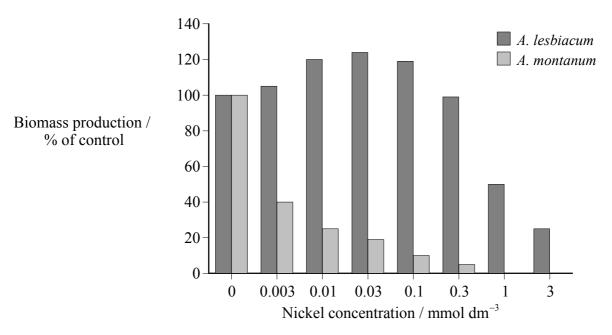


BIOLOGY HIGHER LEVEL		Na	me		
PAPER 2		Nun	nber		
Thursday 9 May 2002 (afternoon)					
2 hours 15 minutes					

INSTRUCTIONS TO CANDIDATES

- Write your candidate name and number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: Answer all of Section A in the spaces provided.
- Section B: Answer two questions from Section B. Write your answers in a continuation answer booklet, and indicate the number of booklets used in the box below. Write your name and candidate number on the front cover of the continuation answer booklets, and attach them to this question paper using the tag provided.
- At the end of the examination, indicate the numbers of the Section B questions answered in the boxes below.


QUESTIONS ANSWERED		EXAMINER	TEAM LEADER	IBCA
SECTION A	ALL	/32	/32	/32
SECTION B				
QUESTION		/20	/20	/20
QUESTION		/20	/20	/20
NUMBER OF CONTINUATION BOOKLETS USED		TOTAL /72	TOTAL /72	TOTAL /72

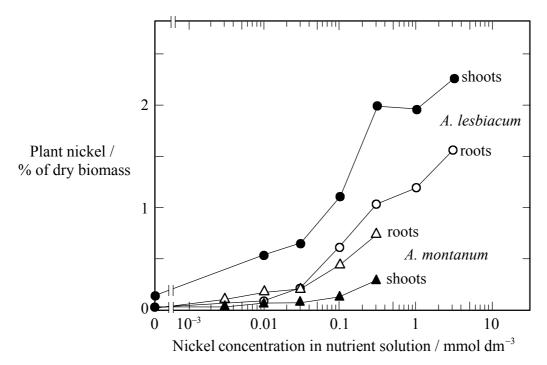
SECTION A

Candidates must answer all questions in the spaces provided.

1. Metals such as zinc, nickel and copper are toxic to most plants. However, some terrestrial plants can store quite a lot of these metal ions in their tissues. These plants are called hyperaccumulators and could be valuable in reducing the levels of such metal ions in the soil.

Some species of *Alyssum* are known to be hyperaccumulators. Two of these *Alyssum* species were grown in nutrient solutions with different concentrations of nickel ions. As a control, each species was grown in nutrient solution which contained no nickel. The following chart shows the biomass production for each species.

[Source: Kramer U, et al., (1996) Nature, 379, page 635]


(a)	A. lesbiacum.	[1]
(b)	Compare the effect of nickel concentration on the growth of both species of Alyssum.	[3]

(This question continues on the following page)

(Question 1 continued)

(c)	Suggest why a nutrient solution was used instead of soil.	[1]	

The graph below shows the percentage of nickel in the dry biomass of the shoots and roots of these plants.

[Source: Kramer U, et al., (1996) Nature, 379, page 635]

(d)	Calculate the change in the percentage of nickel in the dry biomass of A . lesbiacum roots when the nickel concentration is increased from 0.1 to 1.0 mmol dm ⁻³ .	[1]
(e)	Compare the percentage dry biomass of nickel in the roots and shoots between the two species.	[2]

(This question continues on the following page)

Turn over

•	(Question	1	continued)
I	Question	_	COMMINGEN

		esbiacum.		
	Predict, with an explanation, which s containing high levels of nickel.	pecies would be	most useful in de	econtaminating soi
	• • • • • • • • • • • • • • • • • • • •			
xam _]	tic environments can be contaminated ple of this occurred in the Willamette e concentrations of polychlorinated bip areas of the river. The data are given in	River near Portlan henyls (PCB) was	nd, Oregon in the measured in three	United States. The
xam _j issue	ple of this occurred in the Willamette concentrations of polychlorinated bip	River near Portlan henyls (PCB) was parts per billion (nd, Oregon in the s measured in throppb).	United States. Tl
xam _j issue	ple of this occurred in the Willamette concentrations of polychlorinated bip	River near Portlan henyls (PCB) was parts per billion (nd, Oregon in the measured in three	United States. The
xam _]	ple of this occurred in the Willamette concentrations of polychlorinated bip	River near Portlandhenyls (PCB) was parts per billion (nd, Oregon in the s measured in through (ppb).	United States. The
xam _]	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1	nd, Oregon in the s measured in through (ppb). n of PCB / ppb Area 2	United States. Th
xam _j issue	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in <i>Micropterus sp.</i>	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42	nd, Oregon in the s measured in thre (ppb). n of PCB / ppb Area 2 90	United States. Th
examj issue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54	nd, Oregon in the s measured in three (ppb). n of PCB / ppb Area 2 90 21 41	e United States. There species of fish in
examjissue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the times	nd, Oregon in the s measured in thre (ppb). n of PCB / ppb Area 2 90 21 41 assue of the three s	e United States. There species of fish is
examjissue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the times	nd, Oregon in the s measured in thre (ppb). n of PCB / ppb Area 2 90 21 41 assue of the three s	e United States. There species of fish is
exampissue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the time.	nd, Oregon in the s measured in three services and the services of the three services and the services are services are services and the services are services	e United States. There species of fish species in each area
xamjissue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P Area 1:	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the time.	nd, Oregon in the s measured in three services and the services of the services and the services are services are services and the services are s	e United States. There species of fish species in each area
exampissue wo a	Ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P Area 1: Area 2: Compare the amounts of PCB found in	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the time of Micropterus sp.	nd, Oregon in the s measured in three services and C. carpo.	e United States. There species of fish species in each area
exampissue wo a	ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P Area 1:	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the time of Micropterus sp.	nd, Oregon in the s measured in three services and C. carpo.	e United States. There species of fish species in each area
exampissue wo a	Ple of this occurred in the Willamette concentrations of polychlorinated bip treas of the river. The data are given in Micropterus sp. Pomoxis annularis Cyprinus carpo Calculate the mean concentration of P Area 1: Area 2: Compare the amounts of PCB found in	River near Portlandhenyls (PCB) was parts per billion (Concentration Area 1 42 21 54 CB found in the time of Micropterus sp.	nd, Oregon in the s measured in three services and C. carpo.	e United States. There species of fish is

(This question continues on the following page)

(Question I	l continued)
-------------	--------------

	(j)	The concentration of dissolved PCB in the river is 0.01 ppb. Suggest a reason for the PCB concentration in the three species of fish found in the Willamette River.	[3]
2.	(a)	Draw a simple diagram of the gas exchange system in humans.	[3]
	()		. ,
	(b)	Outline the difference between breathing and cell respiration.	[1]
	(c)	Explain how chemical changes in the blood alter the breathing rate during exercise.	[3]

(a)	State the difference between autosomes and sex chromosomes.	
(b)	State Mendel's second law.	
	endel carried out many crosses of different traits with the common garden pea. Menderformed dihybrid crosses between the following traits:	del
•	tall and short plants, where the allele for tall (T) is dominant over the allele for short plants (t).	
	yellow and green seed coats, where the allele for yellow seed coat (Y) is dominant over t allele for green seed coat (y).	he
-	parental cross of purebred tall plants with a green seed coat was performed with purebred shouts with a yellow seed coat. A self-cross of the F ₁ generation was made.	ort
-	parental cross of purebred tall plants with a green seed coat was performed with purebred shounts with a yellow seed coat. A self-cross of the F_1 generation was made.	ort
-	contraction was made. The contraction of the F_1 generation was made. The contraction of these unlinked genes in both the F_1 and F_2 and F_3 and F_4 and F_4 and F_4 and F_5 and F_6 are contracting to the contraction of these unlinked genes in both the F_1 and F_2 and F_3 are contracting to the contraction of	
pla	ants with a yellow seed coat. A self-cross of the F_1 generation was made.	
pla	contraction was made. The contraction of the F_1 generation was made. The contraction of these unlinked genes in both the F_1 and F_2 and F_3 and F_4 and F_4 and F_4 and F_5 and F_6 are contracting to the contraction of these unlinked genes in both the F_1 and F_2 and F_3 are contracting to the contraction of	
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	F ₂
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	F ₂
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	F ₂
pla	Ints with a yellow seed coat. A self-cross of the F_1 generation was made. Calculate the predicted phenotypic ratio of these unlinked genes in both the F_1 and generations. Show your working.	F ₂
pla (c)	Calculate the predicted phenotypic ratio of these unlinked genes in both the F ₁ and generations. Show your working.	F ₂
pla	Calculate the predicted phenotypic ratio of these unlinked genes in both the F ₁ and generations. Show your working.	F ₂
pla (c)	Calculate the predicted phenotypic ratio of these unlinked genes in both the F ₁ and generations. Show your working.	F ₂
pla (c)	Calculate the predicted phenotypic ratio of these unlinked genes in both the F ₁ and generations. Show your working.	F ₂

SECTION B

Answer **two** questions. Up to two additional marks are available for the construction of your answers. Write your answers in a continuation answer booklet. Write your name and candidate number on the front cover of the continuation answer booklets, and attach them to this question paper using the tag provided.

4.	(a)	Outline the general features used to classify organisms into the kingdoms: Prokaryotae, Protoctista, Fungi, Plantae, and Animalia.	[5]
	(b)	Outline a technique for transferring genes between species.	[5]
	(c)	Discuss the need to maintain the biodiversity of organisms as a reservoir of alleles.	[8]
5.	(a)	Draw a diagram to show the distribution of tissues in a cross-section of a root in a dicotyledonous plant.	[5]
	(b)	Describe the process of mineral ion uptake into roots.	[5]
	(c)	Explain the functions of the different tissues of a leaf.	[8]
6.	(a)	Draw the structure of a mitochondrion as seen in an electron micrograph.	[5]
	(b)	Describe the central role of acetyl (ethanoyl) CoA in carbohydrate and fat metabolism.	[5]
	(c)	Discuss the importance of a balanced diet for people with varying energy needs.	[8]
7.	(a)	Describe the ways in which proteins within the cell are transported to the cell surface.	[4]
	(b)	Describe the roles of mRNA, tRNA and ribosomes in translation.	[6]
	(c)	Discuss the theory that species evolve by natural selection using two named examples.	[8]